NLP 使用Word2vec实现文本分类

news/发布时间2024/5/24 5:43:37
🍨 本文为[🔗365天深度学习训练营学习记录博客
 
🍦 参考文章:365天深度学习训练营
 
🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、加载数据 

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
print(train_data)

 二、构造数据迭代器

# 构造数据集迭代器
def coustom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, yx = train_data[0].values[:]
#多类标签的one-hot展开
y = train_data[1].values[:]
print(x,"\n",y)

yield x, y:使用 yield 关键字,将每次迭代得到的 (x, y) 元组作为迭代器的输出。yield 的作用类似于 return,但不同之处在于它会暂停函数的执行,并将结果发送给调用方,但函数的状态会被保留,以便下次调用时从上次离开的地方继续执行。 

 三、构建词典

from gensim.models.word2vec import Word2Vec
import numpy as np# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。min_count=3)     #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。w2v.build_vocab(x)
w2v.train(x,                         total_examples=w2v.corpus_count, epochs=20)

Word2Vec可以直接训练模型,一步到位。这里分了三步

  • Word2Vec(vector_size=100, min_count=3): 创建了一个Word2Vec对象,设置了词向量的维度为100,同时设置了词频最小值为3,即只有在训练语料中出现次数不少于3次的词才会被考虑。

  • w2v.build_vocab(x): 使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。

  • w2v.train(x, total_examples=w2v.corpus_count, epochs=20): 训练Word2Vec模型,其中:

  1. x是训练数据。
  2. total_examples=w2v.corpus_count:total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量
  3. epochs=20指定了训练的轮数,每轮对整个数据集进行一次训练。
# 将文本转化为向量
def average_vec(text):vec = np.zeros(100).reshape((1, 100))for word in text:try:vec += w2v.wv[word].reshape((1, 100))except KeyError:continuereturn vec# 将词向量保存为 Ndarray
x_vec = np.concatenate([average_vec(z) for z in x])# 保存 Word2Vec 模型及词向量
w2v.save('w2v_model.pkl')

这段代码逐步完成了将文本转化为词向量的过程,并保存了Word2Vec模型及词向量。

  1. average_vec(text): 这个函数接受一个文本列表作为输入,并返回一个平均词向量。它首先创建了一个形状为 (1, 100) 的全零NumPy数组 vec,用于存储文本的词向量的累加和。然后,它遍历文本中的每个词,尝试从已经训练好的Word2Vec模型中获取词向量,如果词在模型中存在,则将其词向量加到 vec 中。如果词不在模型中(KeyError异常),则跳过该词。最后,返回词向量的平均值。

  2. x_vec = np.concatenate([average_vec(z) for z in x]): 这一行代码使用列表推导式,对数据集中的每个文本 z 调用 average_vec 函数,得到文本的词向量表示。然后,使用 np.concatenate 函数将这些词向量连接成一个大的NumPy数组 x_vec。这个数组的形状是 (样本数, 100),其中样本数是数据集中文本的数量。

  3. w2v.save('w2v_model.pkl'): 这一行代码保存了训练好的Word2Vec模型及词向量。w2v.save() 方法将整个Word2Vec模型保存到文件中。

train_iter = coustom_data_iter(x_vec, y)
print(len(x),len(x_vec))
  1. train_iter = coustom_data_iter(x_vec, y): 这行代码创建了一个名为 train_iter 的迭代器,用于迭代训练数据。它调用了一个名为 coustom_data_iter 的函数,该函数接受两个参数 x_vecy,分别表示训练样本的特征和标签。在这个上下文中,x_vec 是一个NumPy数组,包含了训练样本的特征向量表示,y 是一个数组,包含了训练样本的标签。该迭代器将用于训练模型。

  2. print(len(x),len(x_vec)): 这行代码打印了训练数据的长度,即 x 的长度和 x_vec 的长度。在这里,len(x) 表示训练样本的数量,len(x_vec) 表示每个样本的特征向量的长度(通常表示特征的维度)。这行代码的目的是用于验证数据的准备是否正确,以及特征向量的维度是否与预期一致。

 

label_name = list(set(train_data[1].values[:]))
print(label_name)

 四、生成数据批次和迭代器

text_pipeline  = lambda x: average_vec(x)
label_pipeline = lambda x: label_name.index(x)
print(text_pipeline("你在干嘛"))
print(label_pipeline("Travel-Query"))
  1. text_pipeline = lambda x: average_vec(x): 这一行定义了一个名为 text_pipeline 的匿名函数(lambda函数),它接受一个参数 x(文本数据)。在函数体内部,它调用了前面定义的 average_vec 函数,将文本数据 x 转换为词向量的平均值。

  2. label_pipeline = lambda x: label_name.index(x): 这一行定义了另一个匿名函数 label_pipeline,它接受一个参数 x,该参数表示标签数据。在函数体内部,它调用了 index 方法来查找标签在 label_name 列表中的索引,并返回该索引值。

  3. print(text_pipeline("你在干嘛")): 这行代码调用了 text_pipeline 函数,将字符串 "你在干嘛" 作为参数传递给函数。函数会将这个文本转换为词向量的平均值,并打印出来。

  4. print(label_pipeline("Travel-Query")): 这行代码调用了 label_pipeline 函数,将字符串 "Travel-Query" 作为参数传递给函数。函数会在 label_name 列表中查找 "Travel-Query" 的索引,并打印出来。

 

from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list= [], []for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)text_list.append(processed_text)label_list = torch.tensor(label_list, dtype=torch.int64)text_list  = torch.cat(text_list)return text_list.to(device),label_list.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle   =False,collate_fn=collate_batch)
  1. text_pipeline = lambda x: average_vec(x): 这行代码创建了一个名为 text_pipeline 的匿名函数,该函数接受一个参数 x,表示文本数据。在这里,text_pipeline 函数被定义为 average_vec(x),即调用之前定义的 average_vec 函数,用来将文本转换为向量表示。

  2. label_pipeline = lambda x: label_name.index(x): 这行代码创建了一个名为 label_pipeline 的匿名函数,该函数接受一个参数 x,表示标签数据。在这里,label_pipeline 函数被定义为 label_name.index(x),即查找 xlabel_name 列表中的索引,返回其索引值作为标签的表示。

  3. collate_batch(batch): 这是一个自定义的函数,用于处理一个批次(batch)的数据。它接受一个批次的数据作为输入,并对数据进行处理,最后返回处理后的文本和标签列表。

  4. collate_batch 函数中:

    • 首先,创建了两个空列表 label_listtext_list,用于存储标签和文本数据。
    • 然后,对批次中的每个样本进行遍历,提取样本的文本和标签。
    • 对于标签部分,调用了 label_pipeline 函数将标签转换为模型可接受的格式,并添加到 label_list 中。
    • 对于文本部分,调用了 text_pipeline 函数将文本转换为向量表示,并转换为 PyTorch 张量格式,并添加到 text_list 中。
    • 最后,将 label_list 转换为 PyTorch 整数张量格式,将 text_list 进行拼接并转换为 PyTorch 浮点数张量格式,并返回这两个张量。
  5. dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch): 这行代码创建了一个 PyTorch 的数据加载器 DataLoader,用于加载训练数据。其中参数说明如下:

    • train_iter 是之前定义的用于迭代训练数据的迭代器。
    • batch_size=8 指定了每个批次的样本数量为 8。
    • shuffle=False 表示不对数据进行洗牌,即不打乱样本的顺序。
    • collate_fn=collate_batch 指定了数据加载器在每个批次加载数据时调用的数据处理函数为 collate_batch 函数,用于处理每个批次的数据。

 

五、构建模型

from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, num_class):super(TextClassificationModel, self).__init__()self.fc = nn.Linear(100, num_class)def forward(self, text):return self.fc(text)num_class  = len(label_name)
vocab_size = 100000
em_size    = 12
model      = TextClassificationModel(num_class).to(device)import timedef train(dataloader):model.train()  # 切换为训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time   = time.time()for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)optimizer.zero_grad()                    # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward()                          # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step()  # 每一步自动更新# 记录acc与losstotal_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:1d} | {:4d}/{:4d} batches ''| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx,len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换为测试模式total_acc, train_loss, total_count = 0, 0, 0with torch.no_grad():for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)loss = criterion(predicted_label, label)  # 计算loss值# 记录测试数据total_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)return total_acc/total_count, train_loss/total_count

六、训练模型

from torch.utils.data.dataset  import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64 # batch size for trainingcriterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 构建数据集
train_iter    = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8),int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| epoch {:1d} | time: {:4.2f}s | ''valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,time.time() - epoch_start_time,val_acc,val_loss,lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
| epoch 1 |   50/ 152 batches | train_acc 0.732 train_loss 0.02655
| epoch 1 |  100/ 152 batches | train_acc 0.822 train_loss 0.01889
| epoch 1 |  150/ 152 batches | train_acc 0.838 train_loss 0.01798
---------------------------------------------------------------------
| epoch 1 | time: 0.93s | valid_acc 0.812 valid_loss 0.019 | lr 5.000000
---------------------------------------------------------------------
| epoch 2 |   50/ 152 batches | train_acc 0.840 train_loss 0.01745
| epoch 2 |  100/ 152 batches | train_acc 0.843 train_loss 0.01807
| epoch 2 |  150/ 152 batches | train_acc 0.843 train_loss 0.01846
---------------------------------------------------------------------
| epoch 2 | time: 1.01s | valid_acc 0.854 valid_loss 0.020 | lr 5.000000
---------------------------------------------------------------------
| epoch 3 |   50/ 152 batches | train_acc 0.850 train_loss 0.01770
| epoch 3 |  100/ 152 batches | train_acc 0.850 train_loss 0.01675
| epoch 3 |  150/ 152 batches | train_acc 0.859 train_loss 0.01565
---------------------------------------------------------------------
| epoch 3 | time: 0.98s | valid_acc 0.836 valid_loss 0.023 | lr 5.000000
---------------------------------------------------------------------
| epoch 4 |   50/ 152 batches | train_acc 0.898 train_loss 0.00972
| epoch 4 |  100/ 152 batches | train_acc 0.892 train_loss 0.00936
| epoch 4 |  150/ 152 batches | train_acc 0.900 train_loss 0.00948
---------------------------------------------------------------------
| epoch 4 | time: 0.91s | valid_acc 0.879 valid_loss 0.011 | lr 0.500000
---------------------------------------------------------------------
| epoch 5 |   50/ 152 batches | train_acc 0.911 train_loss 0.00679
| epoch 5 |  100/ 152 batches | train_acc 0.899 train_loss 0.00786
| epoch 5 |  150/ 152 batches | train_acc 0.903 train_loss 0.00752
---------------------------------------------------------------------
| epoch 5 | time: 0.91s | valid_acc 0.879 valid_loss 0.010 | lr 0.500000
---------------------------------------------------------------------
| epoch 6 |   50/ 152 batches | train_acc 0.905 train_loss 0.00692
| epoch 6 |  100/ 152 batches | train_acc 0.915 train_loss 0.00595
| epoch 6 |  150/ 152 batches | train_acc 0.910 train_loss 0.00615
---------------------------------------------------------------------
| epoch 6 | time: 0.90s | valid_acc 0.880 valid_loss 0.010 | lr 0.050000
---------------------------------------------------------------------
| epoch 7 |   50/ 152 batches | train_acc 0.907 train_loss 0.00615
| epoch 7 |  100/ 152 batches | train_acc 0.911 train_loss 0.00602
| epoch 7 |  150/ 152 batches | train_acc 0.908 train_loss 0.00632
---------------------------------------------------------------------
| epoch 7 | time: 0.92s | valid_acc 0.881 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 8 |   50/ 152 batches | train_acc 0.903 train_loss 0.00656
| epoch 8 |  100/ 152 batches | train_acc 0.915 train_loss 0.00582
| epoch 8 |  150/ 152 batches | train_acc 0.912 train_loss 0.00578
---------------------------------------------------------------------
| epoch 8 | time: 0.93s | valid_acc 0.881 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 9 |   50/ 152 batches | train_acc 0.903 train_loss 0.00653
| epoch 9 |  100/ 152 batches | train_acc 0.913 train_loss 0.00595
| epoch 9 |  150/ 152 batches | train_acc 0.914 train_loss 0.00549
---------------------------------------------------------------------
| epoch 9 | time: 0.93s | valid_acc 0.877 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 10 |   50/ 152 batches | train_acc 0.911 train_loss 0.00565
| epoch 10 |  100/ 152 batches | train_acc 0.908 train_loss 0.00584
| epoch 10 |  150/ 152 batches | train_acc 0.909 train_loss 0.00604
---------------------------------------------------------------------
| epoch 10 | time: 0.91s | valid_acc 0.878 valid_loss 0.009 | lr 0.005000
---------------------------------------------------------------------
模型准确率为:0.8781

七、测试指定数据 

def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text), dtype=torch.float32)print(text.shape)output = model(text)return output.argmax(1).item()# ex_text_str = "随便播放一首专辑阁楼里的佛里的歌"
ex_text_str = "还有双鸭山到淮阴的汽车票吗13号的"model = model.to("cpu")print("该文本的类别是:%s" %label_name[predict(ex_text_str, text_pipeline)])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/QeyK/8132.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

Flink应用场景

1、介绍 (1) Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等。Flink 不仅可以运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架…

掌握Pillow:Python图像处理的艺术

掌握Pillow:Python图像处理的艺术 引言Python与图像处理的概述Pillow库基础导入Pillow库基本概念图像的打开、保存和显示 图像操作基础图像的剪裁图像的旋转和缩放色彩转换和滤镜应用文字和图形的绘制 高级图像处理图像的合成与蒙版操作像素级操作与图像增强复杂图形…

Nginx网络服务四-----日志、Nginx压缩和ssl

1.自定义访问日志 如果访问出错---404,可以去看error.log日志信息 访问日志是记录客户端即用户的具体请求内容信息,而在全局配置模块中的error_log是记录nginx服务器运行时的日志保存路径和记录日志的level,因此两者是不同的,而且…

无人机精准定位技术,GPS差分技术基础,RTK原理技术详解

差分GPS的基本原理 差分GPS(Differential GPS,简称DGPS)的基本原理是利用一个或多个已知精确坐标的基准站,与用户(移动站)同时接收相同的GPS卫星信号。由于GPS定位时会受到诸如卫星星历误差、卫星钟差、大…

动态规划课堂2-----路径问题

目录 引言: 例题1:不同路径 例题2:不同路径II 例题3:礼物的最⼤价值 例题4:下降路径最⼩和 例题5:最小路径和 结语: 引言: 在学习完动态规划斐波那契数列模型后,…

redis八股

文章目录 数据类型字符串实现使用场景 List 列表实现使用场景 Hash 哈希实现使用场景 Set 集合实现使用场景 ZSet 有序集合实现使用场景 BitMap实现使用场景 Stream使用场景pubsub为什么不能作为消息队列 数据结构机制SDS 简单动态字符串压缩列表哈希表整数集合跳表quicklistli…

开源现场总线协议栈(ethercat、ethernet/ip、opc ua、profinet、canopen、modbus)

ecat主站及其相关: 1.soem:GitHub - OpenEtherCATsociety/SOEM: Simple Open Source EtherCAT MasterSimple Open Source EtherCAT Master. Contribute to OpenEtherCATsociety/SOEM development by creating an account on GitHub.https://github.com/…

pytest钩子函数-pytest_runtest_logreport提取测试用例相关信息

问题:想在每个日志中记录测试用例开始结束时间,获取到测试用例的名称。 解决办法:使用钩子pytest_runtest_logreport 在pytest中,想要在conftest.py文件中获取正在运行的测试用例的名称,可以使用pytest_runtest_logre…

顺序表的列题(力扣)和旋转数组

文章目录 一.删除有序数组中的重复项(取自力扣) 二.合并两个有序数组(取自力扣) 三.旋转数组(多解法) 前言 见面我们说到了顺序表今天来分享几个有关于顺序表的题目 一.删除有序数组中的重复项&#xff…

性能优化问题思考总结

INP 是什么? Interaction to Next Paint (INP) INP是一项指标,通过观察用户在访问网页期间发生的所有点击、点按和键盘互动的延迟时间,评估网页对用户互动的总体响应情况。 互动是指在同一逻辑用户手势期间触发的一组事件处理脚本。例如&a…

《Large Language Models for Generative Information Extraction: A Survey》阅读笔录

论文地址:Large Language Models for Generative Information Extraction: A Survey 前言 映像中,比较早地使用“大模型“”进行信息抽取的一篇论文是2022年发表的《Unified Structure Generation for Universal Information Extraction》,也…

四、矩阵的分类

目录 1、相等矩阵 2、同形矩阵 3、方阵: 4、负矩阵、上三角矩阵、下三角矩阵: 5、对角矩阵:是方阵 ​编辑7、单位矩阵:常常用 E或I 来表示。它是一个方阵 8、零矩阵: 9、对称矩阵:方阵 1、相等矩阵 …

Mamba详细介绍和RNN、Transformer的架构可视化对比

Transformer体系结构已经成为大型语言模型(llm)成功的主要组成部分。为了进一步改进llm,人们正在研发可能优于Transformer体系结构的新体系结构。其中一种方法是Mamba(一种状态空间模型)。 Mamba: Linear-Time Sequence Modeling with Select…

mac电脑监控软件哪个好

在Mac电脑使用日益普及的今天,企业对于Mac终端的安全管理需求也日益增长。Mac电脑监控软件作为一种有效的管理工具,能够帮助企业提高数据安全性和员工工作效率。 在众多Mac电脑监控软件中,域智盾软件以其卓越的功能和性能脱颖而出&#xff0c…

数据结构2月25日

第一道: 第二道: 1、插入到prev和next中间 1.new(struct list_head*)malloc(sizeof(struct list_head*)); if(newNULL) { printf("失败\n"); return; } new->nextprev->next; prev->nextnew; return; 2、删除prve和next…

「连载」边缘计算(十九)02-22:边缘部分源码(源码分析篇)

(接上篇) 从启动函数Start()中可以看到,其以go routine的方式启动很多后台处理服务,具体如下。 1)初始化edged的kubeClient,具体如下所示。 // use self defined client to replace fake kube…

EasyRecovery2024个人免费版本电脑手机数据恢复软件下载

EasyRecovery是一款功能强大的数据恢复软件,能够帮助用户恢复丢失、删除、格式化或损坏的数据。无论是由于误操作、病毒攻击、硬盘故障还是其他原因导致的数据丢失,EasyRecovery都能提供有效的解决方案。 该软件支持从各种存储介质恢复数据,…

RV32/64 特权架构 - 特权模式与指令

RV32/64 特权架构 - 特权模式与指令 1 特权模式2 特权指令2.1 mret(从机器模式返回到先前的模式)2.2 sret(从监管模式返回到先前的模式)2.3 wfi(等待中断)2.4 sfence.vma(内存屏障) …

MySQL - 事务日志

目录 1. redo日志 1.1 为什么需要REDO日志 1.2 REDO日志的好处、特点 1. 好处 2. 特点 1.3 redo的组成 1.4 redo的整体流程 1.5 redo log的刷盘策略 1.6 不同刷盘策略演示 1. 流程图 ​编辑2. 举例 1.7 写入redo log buffer 过程 1.8 redo log file 1. 相关参数…

MCU最小系统电路设计(以STM32F103C8T6为例)

目录 一、何为最小系统? 二、最小系统电路设计 1.电源 (1)各种名词解释 (2)为什么会有VDD_1 _2 _3区分? (3)Mirco USB (4)5v->3.3v滤波电路 &#…
推荐文章