Pytorch-Adam算法解析

news/发布时间2024/5/14 17:52:03

关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

Hi,兄弟们,这里是肆十二,今天我们来讨论一下深度学习中的Adam优化算法。

Adam算法解析

Adam算法是一种在深度学习中广泛使用的优化算法,它的名称来源于适应性矩估计(Adaptive Moment Estimation)。Adam算法结合了两种扩展式的随机梯度下降法的优点,即适应性梯度算法(AdaGrad)和均方根传播(RMSProp)。它通过计算梯度的一阶矩估计和二阶矩估计,为不同的参数设计独立的自适应性学习率。

具体来说,Adam算法的特点和工作原理如下:

  1. 惯性保持:Adam算法记录了梯度的一阶矩,即过往所有梯度与当前梯度的平均,使得每一次更新时,梯度能平滑、稳定地过渡。这种惯性保持的特性使得算法能够适应不稳定的目标函数。
  2. 环境感知:Adam算法还记录了梯度的二阶矩,即过往梯度平方与当前梯度平方的平均。这体现了算法对环境的感知能力,并为不同的参数产生自适应的学习速率。
  3. 超参数解释性:Adam算法中的超参数具有很好的解释性,通常无需调整或仅需很少的微调。这些超参数包括学习率、一阶矩估计的指数衰减率、二阶矩估计的指数衰减率以及一个用于数值稳定的小常数。

在实际应用中,Adam算法已被证明在许多任务上,如计算机视觉和自然语言处理等深度学习应用中,具有优秀的性能。它特别适合处理大规模数据和参数的优化问题,以及非稳态目标和包含高噪声或稀疏梯度的问题。

总的来说,Adam算法是一种高效、易于实现的优化算法,它通过结合多种优化策略,为深度学习模型提供了更稳定、更快速的收敛性能。

Pytorch中的Adam算法

在PyTorch中,torch.optim.Adam 是实现 Adam 优化算法的类。以下是 Adam 优化器的一些关键参数解析:

  • params (iterable): 待优化参数的迭代器或者是定义了参数组的字典。
  • lr (float, optional): 学习率 (默认: 1e-3)。
  • betas (Tuple[float, float], optional): 用于计算梯度以及梯度平方的运行平均值的系数 (默认: (0.9, 0.999))。
  • eps (float, optional): 为了增加数值稳定性而添加到分母的一个项 (默认: 1e-8)。
  • weight_decay (float, optional): 权重衰减 (L2 惩罚) (默认: 0)。
  • amsgrad (boolean, optional): 是否使用 AMSGrad 变种算法,该算法在某些情况下能提供更好的收敛性 (默认: False)。

以下是一个简单的使用案例:

import torch  
import torch.nn as nn  
from torch.optim import Adam  # 定义一个简单的模型  
model = nn.Sequential(  nn.Linear(10, 5),  nn.ReLU(),  nn.Linear(5, 2),  
)  # 定义损失函数  
criterion = nn.CrossEntropyLoss()  # 定义优化器,传入模型的参数和学习率等  
optimizer = Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)  # 假设有输入数据和目标  
input_data = torch.randn(1, 10)  
target = torch.tensor([1])  # 模型的训练循环(这里只展示一个迭代)  
for epoch in range(1):  # 通常会有多个epoch  # 前向传播  output = model(input_data)  # 计算损失  loss = criterion(output, target)  # 反向传播  optimizer.zero_grad()  # 清除之前的梯度  loss.backward()        # 计算当前梯度  # 更新权重  optimizer.step()       # 应用梯度更新  print(f'Epoch {epoch+1}, Loss: {loss.item()}')

在上面的例子中,我们首先定义了一个简单的两层神经网络模型,然后定义了交叉熵损失函数作为优化目标。接着,我们创建了一个 Adam 优化器实例,并将模型的参数、学习率以及其他可选参数传递给它。在训练循环中,我们执行了标准的前向传播、损失计算、反向传播以及权重更新步骤。在每次迭代结束时,我们打印出当前的损失值。

注意,实际应用中,训练循环会包含多个 epoch,并且通常会有数据加载、模型验证和保存等其他步骤。此外,学习率和其他超参数可能需要根据具体任务进行调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/RKsi/543.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

找座位 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 100分 题解: Java / Python / C++ 题目描述 在一个大型体育场内举办了一场大型活动,由于疫情防控的需要,要求每位观众的必须间隔至少一个空位才允许落座。 现在给出一排观众座位分布图,座位中存在已落座的观众,请计算出,在不移动现有观众座位…

鸿蒙语言ArkTS(更好的生产力与性能)

ArkTS是鸿蒙生态的应用开发语言 ArkTS提供了声明式UI范式、状态管理支持等相应的能力,让开发者可以以更简洁、更自然的方式开发应用。 同时,它在保持TypeScript(简称TS)基本语法风格的基础上,进一步通过规范强化静态检…

VMware还原Windows11 ghost镜像

文章目录 环境步骤准备制作启动iso文件创建虚拟机启动虚拟机还原Windows 参考 环境 Windows 11 家庭中文版VMware Workstation 17 Pro石大师装机大师Windows 11 ghost系统镜像 步骤 准备 下载好Windows 11 ghost系统镜像,我下载的文件是 FQ_WIN11_X64_VDL_V2080…

Python Flask Web + PyQt 前后端分离的项目—学习成绩可视化分析系统

简介 使用工具: Python,PyQt ,Flask ,MySQL 注:制作重点在网页端,因此网页端的功能更全 WEB界面展示: 系统登录分为管理员,老师,学生3部分 管理员统一管理所有的账号信息以及登录…

QT编写工具基本流程(自用)

以后有人让你写工具的时候,可以方便用这个模版及时提高工作效率,可以争取早点下班。包含库目录,头文件目录,输出目录以及翻译和部署,基本上都全了,也可以做收藏用用。 文章目录 1、创建项目Dialog Widget都…

展示用HTML编写的个人简历信息

展示用HTML编写的个人简历信息 相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document…

单片机01天---stm32基本信息了解

下载数据手册 以STM32F407ZG为例 网站&#xff1a;www.st.com&#xff0c;搜索芯片型号&#xff0c;下载“数据手册”使用 数据手册使用 查看芯片型号信息 芯片资源信息 时钟框图 芯片资源表格下方 GPIO口表格 一般位于下图后面的位置 ①工作电压&#xff1a;1.8V – 3.6V…

《游戏引擎架构》 -- 学习2

声明&#xff0c;定义&#xff0c;以及链接规范 翻译单元 声明与定义 链接规范 C/C 内存布局 可执行映像 程序堆栈 动态分配的堆 对象的内存布局 kilobyte 和 kibibyte 游戏所需的三维数学 四元数 ​​​​​​​ 四元数运算 电子书p233 &#xff08;看不懂&#xff0c;先放…

【漏洞复现-通达OA】通达OA身份认证绕过漏洞

一、漏洞简介 通达OA(Office Anywhere网络智能办公系统)是中国通达公司的一套协同办公自动化软件。通达OA 2013-通达OA2017存在一个认证绕过漏洞,利用该漏洞可以实现任意用户登录。攻击者可以通过构造恶意攻击代码,成功登录系统管理员账户,继而在系统后台上传恶意文件控制…

论文阅读 - Non-Local Spatial Propagation Network for Depth Completion

文章目录 1 概述2 模型说明2.1 局部SPN2.2 非局部SPN2.3 结合置信度的亲和力学习2.3.1 传统正则化2.3.2 置信度引导的affinity正则化 3 效果3.1 NYU Depth V23.2 KITTI Depth Completion 参考资料 1 概述 本文提出了一种非局部的空间传播网络用于深度图补全&#xff0c;简称为…

【从Python基础到深度学习】 8. VIM两种状态

一、安装 sudo apt install vim 二、VIM两种模式 - 命令状态/编辑状态 1.1 进入/退出VIM 进入VIM vim 退出vim :q <enter> 2.2 根目录下添加配置文件 window下创建vimrc类型文件内容如下&#xff1a; set nu set cursorline set hlsearch set tabstop4 使用Wins…

为什么CrossOver for Mac 24运行的运行游戏黑屏

品牌型号:MacBook Air 系统:macOS 10.13 软件版本: CrossOver for Mac 24 CrossOver是一款类虚拟机软件&#xff0c;它能像虚拟机一样在mac中安装windows应用程序。与虚拟机相比&#xff0c;CrossOver减少了搭建windows系统环境的复杂步骤。同时&#xff0c;CrossOver支持的…

uni-app学习:真机调试

感觉某些文章的步骤写得不是非常完整,新手看可能会感觉很迷糊,故写此文,对一些知识进行整合与完善,帮助他人,这种文章以后我可能会写很多,我感觉很有意义。 需要用可以进行文件传输的USB线把自己的手机和电脑进行连接。 然后,手机要进入开发者模式。 小米(Mi) 红米…

[OPEN SQL] 修改数据

MODIFY语句用于修改数据库表中的数据 MODIFY拥有INSERT和UPDATE的操作&#xff0c;如果数据库表中不存在符合条件的数据则会添加该条新数据&#xff0c;反之数据库表中存在符合条件的数据则会更新该条数据 本次操作使用的数据库表为SCUSTOM&#xff0c;其字段内容如下所示 航…

云原生之容器编排-Docker Swarm

1. 前言 上一篇我们讲到Docker Compose可以定义和运行多容器应用程序&#xff0c;用一个YAML配置文件来声明式管理服务&#xff0c;在一台安装了Docker engine的Linux系统上可以很好的工作&#xff0c;但是现实中不可能只有一台Linux系统&#xff0c;一台Linux系统不可能有足够…

Spring源码:手写SpringIOC

文章目录 一、分析二、实现1、版本1&#xff1a;实现Bean注入IOC容器&#xff0c;并从容器中获取1&#xff09;定义BeanDefinition2&#xff09;定义BeanDefinition实现类3&#xff09;定义BeanDefinitionRegistry4&#xff09;定义Beanfactory5&#xff09;定义默认Beanfactor…

GitLab私有Git

GitLab私有Git 1 GitLab简介 GitLab是整个DevOps生命周期的第一个单一应用程序。只有GitLab才能启用Concurrent DevOps&#xff0c;从组件链的约束中解锁组织。GitLab提供无与伦比的可见性&#xff0c;更高的效率和全面的治理。这使得软件生命周期加快了200&#xff05;&…

Stable Diffusion 模型下载:ToonYou(平涂卡通)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十

【前端高频面试题--git篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;前端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 前端高频面试题--git篇 往期精彩内容常用命令git add 和 git stage 有什么区别怎么使用git连接…
推荐文章