高数考研 -- 公式总结(更新中)

news/发布时间2024/5/15 8:44:55

1. 两个重要极限

(1) lim ⁡ x → 0 sin ⁡ x x = 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 limx0xsinx=1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) = 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1 limf(x)0f(x)sinf(x)=1.
(2) lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e} limx(1+x1)x=e, 推广形式 lim ⁡ x → 0 ( 1 + x ) 1 x = e , lim ⁡ f ( x ) → ∞ [ 1 + 1 f ( x ) ] f ( x ) = e \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e} limx0(1+x)x1=e,limf(x)[1+f(x)1]f(x)=e

2. 常用的等价无穷小量及极限公式

(1) 当 x → 0 x \rightarrow 0 x0 时,常用的等价无穷小

  • (1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1.
  • (2) 1 − cos ⁡ x ∼ 1 2 x 2 , 1 − cos ⁡ b x ∼ b 2 x 2 ( b ≠ 0 ) 1-\cos x \sim \frac{1}{2} x^2, 1-\cos ^b x \sim \frac{b}{2} x^2(b \neq 0) 1cosx21x2,1cosbx2bx2(b=0).
  • (3) a x − 1 ∼ x ln ⁡ a ( a > 0 a^x-1 \sim x \ln a(a>0 ax1xlna(a>0, 且 a ≠ 1 ) a \neq 1) a=1).
  • (4) ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) (1+x)^\alpha-1 \sim \alpha x (\alpha \neq 0) (1+x)α1αx(α=0).

(2) 当 n → ∞ n \rightarrow \infty n x → ∞ x \rightarrow \infty x 时,常用的极限公式

  • (1) lim ⁡ n → ∞ n n = 1 , lim ⁡ n → ∞ a n = 1 ( a > 0 ) \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0) limnnn =1,limnna =1(a>0).
  • (2) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m , 0 , n < m , ∞ , n > m , \lim _{x \rightarrow \infty} \frac{a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+\cdots+b_1 x+b_0}=\left\{\begin{array}{ll}\frac{a_n}{b_m}, & n=m, \\ 0, & n<m, \\ \infty, & n>m,\end{array}\right. limxbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0= bman,0,,n=m,n<m,n>m, 其中 a n , b m a_n, b_m an,bm 均不

为 0 .

  • (3) lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 , ∞ , ∣ x ∣ > 1 , 1 , x = 1 , 不存在,  x = − 1 ; lim ⁡ n → ∞ e n x = { 0 , x < 0 , + ∞ , x > 0 , 1 , x = 0. \lim _{n \rightarrow \infty} x^n=\left\{\begin{array}{ll}0, & |x|<1, \\ \infty, & |x|>1, \\ 1, & x=1, \\ \text { 不存在, } & x=-1 ;\end{array} \lim _{n \rightarrow \infty} \mathrm{e}^{n x}= \begin{cases}0, & x<0, \\ +\infty, & x>0, \\ 1, & x=0 .\end{cases}\right. limnxn= 0,,1, 不存在x<1,x>1,x=1,x=1;limnenx= 0,+,1,x<0,x>0,x=0.
  • (4) 若 lim ⁡ g ( x ) = 0 , lim ⁡ f ( x ) = ∞ \lim g(x)=0, \lim f(x)=\infty limg(x)=0,limf(x)=, 且 lim ⁡ g ( x ) f ( x ) = A \lim g(x) f(x)=A limg(x)f(x)=A, 则有
    lim ⁡ [ 1 + g ( x ) ] f ( x ) = e A . \lim [1+g(x)]^{f(x)}=\mathrm{e}^A . lim[1+g(x)]f(x)=eA.

3. x → 0 x \rightarrow 0 x0 时常见的麦克劳林公式

sin ⁡ x = x − 1 3 ! x 3 + o ( x 3 ) , cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) , tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) , arcsin ⁡ x = x + 1 3 ! x 3 + o ( x 3 ) , arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) , ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) , e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) , ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) . \begin{aligned} & \sin x=x-\frac{1}{3 !} x^3+o\left(x^3\right), \quad \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4+o\left(x^4\right),\\ \\ & \tan x=x+\frac{1}{3} x^3+o\left(x^3\right), \quad \arcsin x=x+\frac{1}{3 !} x^3+o\left(x^3\right), \\ \\ & \arctan x=x-\frac{1}{3} x^3+o\left(x^3\right), \quad \ln (1+x)=x-\frac{1}{2} x^2+\frac{1}{3} x^3+o\left(x^3\right), \\ \\ & \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+o\left(x^3\right),(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+o\left(x^2\right) . \end{aligned} sinx=x3!1x3+o(x3),cosx=12!1x2+4!1x4+o(x4),tanx=x+31x3+o(x3),arcsinx=x+3!1x3+o(x3),arctanx=x31x3+o(x3),ln(1+x)=x21x2+31x3+o(x3),ex=1+x+2!1x2+3!1x3+o(x3),(1+x)a=1+ax+2!a(a1)x2+o(x2).

x → 0 x \rightarrow 0 x0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:

x − sin ⁡ x ∼ x 3 6 , tan ⁡ x − x ∼ x 3 3 , x − ln ⁡ ( 1 + x ) ∼ x 2 2 x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2} xsinx6x3,tanxx3x3,xln(1+x)2x2, arcsin ⁡ x − x ∼ x 3 6 , x − arctan ⁡ x ∼ x 3 3 \arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3} arcsinxx6x3,xarctanx3x3.

4. 基本导数公式

( x μ ) ′ = μ x μ − 1 ( μ 为常数 ) , ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( ln ⁡ x ) ′ = 1 x , ( sin ⁡ x ) ′ = cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 , ( tan ⁡ x ) ′ = sec ⁡ 2 x , ( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( arccot ⁡ x ) ′ = − 1 1 + x 2 , ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x , [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , , [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \begin{array}{ll} \left(x^\mu\right)^{\prime}=\mu x^{\mu-1} ( \mu 为常数), & \left(a^x\right)^{\prime}=a^x \ln a(a>0, a \neq 1), \\ \\ \left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1) , & (\ln x)^{\prime}=\frac{1}{x}, \\ \\ (\sin x)^{\prime}=\cos x, & (\cos x)^{\prime}=-\sin x, \\ \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^2}}, & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^2}}, \\ \\ (\tan x)^{\prime}=\sec ^2 x, & (\cot x)^{\prime}=-\csc ^2 x, \\ \\ (\arctan x)^{\prime}=\frac{1}{1+x^2}, & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^2}, \\ \\ (\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x, \\ \\ {\left[\ln \left(x+\sqrt{x^2+1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},}, & {\left[\ln \left(x+\sqrt{x^2-1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2-1}}} \end{array} (xμ)=μxμ1(μ为常数),(logax)=xlna1(a>0,a=1),(sinx)=cosx,(arcsinx)=1x2 1,(tanx)=sec2x,(arctanx)=1+x21,(secx)=secxtanx,[ln(x+x2+1 )]=x2+1 1,,(ax)=axlna(a>0,a=1),(lnx)=x1,(cosx)=sinx,(arccosx)=1x2 1,(cotx)=csc2x,(arccotx)=1+x21,(cscx)=cscxcotx,[ln(x+x21 )]=x21 1
三角函数六边形记忆法:
在这里插入图片描述

注: 变限积分求导公式.
F ( x ) = ∫ φ 2 ( x ) φ 1 ( x ) f ( t ) d t F(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} t F(x)=φ2(x)φ1(x)f(t)dt, 其中 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 可导函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的值域在 [ a , b ] [a, b] [a,b] 上, 则在函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的公共定义域上有:
F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) . F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) . F(x)=dxd[φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x).

5. 几个重要函数的麦克劳林展开式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right) ex=1+x+2!1x2++n!1xn+o(xn).

(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right) sinx=x3!1x3++(1)n(2n+1)!1x2n+1+o(x2n+1).

(3) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 1 ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right) cosx=12!1x2+4!1x4+(1)n(2n)!1x2n+o(x2n).

(4) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|<1 1x1=1+x+x2++xn+o(xn),x<1.

(5) 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+o\left(x^n\right),|x|<1 1+x1=1x+x2+(1)nxn+o(xn),x<1.

(6) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , − 1 < x ⩽ 1 \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1} \frac{x^n}{n}+o\left(x^n\right),-1<x \leqslant 1 ln(1+x)=x2x2+3x3+(1)n1nxn+o(xn),1<x1.

(7) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + (1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^n+ (1+x)a=1+ax+2!a(a1)x2++n!a(a1)(an+1)xn+ o ( x n ) o\left(x^n\right) o(xn).

6. 曲率和曲率半径计算公式

(1) 曲率

  • (1) (非参数方程) 曲线 y = f ( x ) y=f(x) y=f(x) 上任意一点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 处的曲率为
    K = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 .  K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^2\right]^{\frac{3}{2}}} \text {. } K=[1+(y)2]23y′′
  • (2) (参数方程) { x = x ( t ) , y = y ( t ) \left\{\begin{array}{l}x=x(t), \\ y=y(t)\end{array}\right. {x=x(t),y=y(t) 上任意一点的曲率为
    K = ∣ x ′ ( t ) y ′ ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) ∣ { [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 } 3 2 . K=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left\{\left[x^{\prime}(t)\right]^2+\left[y^{\prime}(t)\right]^2\right\}^{\frac{3}{2}}} . K={[x(t)]2+[y(t)]2}23x(t)y′′(t)y(t)x′′(t).
    参数方程求导:
    参数方程 { x = φ ( t ) y = ψ ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right. {x=φ(t)y=ψ(t)

d y d x = d y / d t d x / d t = ψ ′ ( t ) φ ′ ( t ) , 令其为 F ( t ) , \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)},令其为F(t),\\ dxdy=dx/dtdy/dt=φ(t)ψ(t),令其为F(t),
d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) / d t d x / d t = ψ ′ ′ ( t ) φ ′ ( t ) − ψ ′ ( t ) φ ′ ′ ( t ) [ φ ′ ( t ) ] 3 = d ( F ( t ) ) / d t d x / d t = F ′ ( t ) φ ′ ( t ) \frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d\left(\frac{d y}{d x}\right) / d t}{d x / d t}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} = \frac{d(F(t))/dt}{dx/dt} = \frac{F^{\prime}(t)}{\varphi^{\prime}(t)} dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ(t)]3ψ′′(t)φ(t)ψ(t)φ′′(t)=dx/dtd(F(t))/dt=φ(t)F(t)
可以记最后那个简单的式子

(2) 曲率半径
R = 1 K ( K ≠ 0 ) R=\frac{1}{K}(K \neq 0) R=K1(K=0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/VELY/8342.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

使用 React 和 ECharts 创建地球模拟扩散和飞线效果

在本博客中&#xff0c;我们将学习如何使用 React 和 ECharts 创建一个酷炫的地球模拟扩散效果。我们将使用 ECharts 作为可视化库&#xff0c;以及 React 来构建我们的应用。地球贴图在文章的结尾。 最终效果 准备工作 首先&#xff0c;确保你已经安装了 React&#xff0c;并…

信息安全计划

任何管理人员或人力资源专业人士都知道&#xff0c;除非彻底记录标准和实践&#xff0c;否则永远无法真正实施和执行标准和实践。正如您可能想象的那样&#xff0c;在保护您的网络、技术和数据系统免受网络威胁以及在发生这些事件时规划最及时、高效和有效的响应时&#xff0c;…

OpenAI划时代大模型——文本生成视频模型Sora作品欣赏(八)

Sora介绍 Sora是一个能以文本描述生成视频的人工智能模型&#xff0c;由美国人工智能研究机构OpenAI开发。 Sora这一名称源于日文“空”&#xff08;そら sora&#xff09;&#xff0c;即天空之意&#xff0c;以示其无限的创造潜力。其背后的技术是在OpenAI的文本到图像生成模…

猜测了一个sora模型结构

如果是上述的这种结构&#xff0c;可以确定的是patch 的size &#xff08;一个图像的小片&#xff09;是固定大小的 那么调节一个视觉分辨率大小通过patchs的大小决定。 如图所示可以证明输入的时候图片没有本物理人为的分割为小片&#xff0c;是通过一个模型进行分割为 小片。…

常用实验室器皿耐硝酸盐酸进口PFA材质容量瓶螺纹盖密封效果好

PFA容量瓶规格参考&#xff1a;10ml、25ml、50ml、100ml、250ml、500ml、1000ml。 别名可溶性聚四氟乙烯容量瓶、特氟龙容量瓶。常用于ICP-MS、ICP-OES等痕量分析以及同位素分析等实验&#xff0c;也可在地质、电子化学品、半导体分析测试、疾控中心、制药厂、环境检测中心等机…

记一次生产jvm oom问题

前言 jvm添加以下参数&#xff0c;发生OOM时自动导出内存溢出文件 -XX:HeapDumpOnOutOfMemoryError -XX:HeapDumpPath/opt 内存分析工具&#xff1a; MAT, 下载地址&#xff1a;Eclipse Memory Analyzer Open Source Project | The Eclipse Foundation&#xff0c; 注意工具地址…

Springboot教程(二)——过滤器、拦截器

过滤器 过滤器可以在调用控制器方法之前进行一些操作&#xff0c;过滤器类一般放在filter包下。 配置类注册 使用过滤器时&#xff0c;要实现Filter接口&#xff0c;并重写doFilter方法&#xff1a; class TestFilter : Filter {override fun doFilter(request: ServletReq…

Stable Diffusion WebUI 折腾新篇章

原文&#xff1a;https://blog.iyatt.com/?p13123 1 前言 第一次玩 Stable Diffusion WebUI 是三十几天前&#xff0c;当时还在用四年半前&#xff08;大学前暑假&#xff09;买的轻薄本&#xff0c;而在半年前独显还坏了&#xff0c;所以是纯纯的用 CPU 折腾&#xff0c;刚…

Spring Boot中的@Scheduled注解:定时任务的原理与实现

1. 前言 本文将详细探讨Spring Boot中Scheduled注解的使用&#xff0c;包括其原理、实现流程、步骤和代码示例。通过本文&#xff0c;读者将能够了解如何在Spring Boot应用中轻松创建和管理定时任务。 2. Scheduled注解简介 在Spring框架中&#xff0c;Scheduled注解用于标记…

(202402)多智能体MetaGPT入门2:AI Agent知识体系结构

文章目录 前言1 智能体定义2 热门智能体案例3 智能体的宏观机会4 AI Agent与Sy1&Sy2观看视频 前言 感谢datawhale组织开源的多智能体学习内容&#xff0c;飞书文档地址在https://deepwisdom.feishu.cn/wiki/KhCcweQKmijXi6kDwnicM0qpnEf 本章主要为Agent相关理论知识的学…

大概了解一下G1收集器

在上一篇文章中&#xff08;链接&#xff1a;大概了解一下CMS收集器&#xff09;我们提到&#xff0c;CMS是一种主要针对旧生代对象进行回收的收集器。与CMS不同&#xff0c;G1号称“全功能的垃圾收集器”&#xff0c;对初生代内存和旧生代内存均进行管理。鉴于此&#xff0c;这…

《艾尔登法环 黄金树幽影》是什么?Mac电脑怎么玩《艾尔登法环》艾尔登法环下载

全体起立&#xff0c;《艾尔登法环 》最新DLC《黄金树幽影》将在6月21日发布&#xff0c;steam售价198元&#xff0c;现在就可以预订了。宫崎英高在接受FAMI通的采访时表示&#xff0c;新DLC的体量远超《黑暗之魂》和《血源诅咒》资料片。好家伙&#xff0c;别人是把DLC续作&am…

【Python笔记-设计模式】代理模式

一、说明 代理模式是一种结构型设计模式&#xff0c;提供对象的替代品或其占位符。代理控制着对于原对象的访问&#xff0c;并允许在将请求提交给对象前后进行一些处理。 (一) 解决问题 控制对对象的访问&#xff0c;或在访问对象前增加额外的功能或控制访问 (二) 使用场景…

2 月 27 日算法练习-暴力

括号序列 暴力做法&#xff0c;利用 dfs&#xff0c;能过<40%&#xff0c;need 用来找到最小需要的括号数&#xff0c;dfs中的 left 代表未匹配的左括号&#xff0c;左右括号做法相反。 #include<bits/stdc.h> using namespace std; string s; int ans,ans2,len,min_s…

matlab动力学共振颤振研究

1、内容简介 略 58-可以交流、咨询、答疑 采用四阶龙哥库塔方法求解方程组&#xff0c;方便控制碰撞的时间&#xff0c;检测到碰撞的时间&#xff0c;改变速度&#xff0c;调整位移&#xff0c;碰撞检测通过对比相对位移 2、内容说明 略 基本思路&#xff1a;采用四阶龙哥…

龙蜥 Anolis OS8.4 设置IP

1、配置文件路径 /etc/sysconfig/network-scripts/ [rootlocalhost ~]# cd /etc/sysconfig/network-scripts/ [rootlocalhost network-scripts]# ls ifcfg-ens32 进入配置文件路径后&#xff0c;展示。ifcfg-ens32这个不同的服务器不一样&#xff0c;本次虚拟机所对应的是ens3…

HTTP1.0,HTTP1.1,持久连接,非持久连接,TCP,UDP,三次握手和四次挥手,HTTP与HTTPS,对称加密和非对称加密,状态码

HTTP1.0和HTTP1.1的区别 HTTP1.0HTTP1.1连接方式非持久连接持久连接缓存 主要使用 header 里的 If-Modified-Since、Expires 来做为缓存判断的标准 引入了更多的缓存控制策略&#xff0c;例如 Etag、If-Unmodified-Since、If-Match、If-None-Match 等更多可供选择的缓存头来控…

一键生成PDF即刻呈现:轻松创建无忧体验

在信息爆炸的时代&#xff0c;我们每天都在与各种文件、资料打交道。无论是工作中的报告、合同&#xff0c;还是学习中的笔记、论文&#xff0c;如何高效、安全地管理这些珍贵的资料&#xff0c;成为了我们迫切的需求。幸运的是&#xff0c;随着科技的发展&#xff0c;我们不再…

机器学习笔记 占用网络简述(Occupancy Networks)

1、简述 在之前的文章中,我们深入研究了各种 3D 数据表示。我们看到了传​​统方法的缺点以及对精确捕捉 3D 对象复杂性的先进方法的需求。现在,让我们深入探讨我们表示 3D 形状的方式,占用网络。 https://skydance.blog.csdn.net/article/details/134672671https://skydan…

【小沐学QT】QT学习之OpenGL开发笔记

文章目录 1、简介2、Qt QOpenGLWidget gl函数3、Qt QOpenGLWidget qt函数4、Qt QOpenGLWindow5、Qt glut6、Qt glfw结语 1、简介 Qt提供了与OpenGL实现集成的支持&#xff0c;使开发人员有机会在更传统的用户界面的同时显示硬件加速的3D图形。 Qt有两种主要的UI开发方…
推荐文章